MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  /*  = [          ] ω           .




Equações de Maxwell na relatividade especial

[editar | editar código-fonte]

Na relatividade especial, para expressar mais claramente o fato de que as equações de Maxwell no vácuo tomam a mesma forma em todos os sistemas de coordenadas inerciais, as equações de Maxwell são escritas em termos de quadrivetores e quadritensores na forma manifestamente covariante:

,
  /*  = [          ] ω           .

e

 
  /*  = [          ] ω           .

onde J é a quadricorrenteF é o tensor intensidade de campo ou tensor de Faraday, escrito como uma matriz 4 × 4 , e  é o quadrigradiente, tal que  é o operador d'Alembertiano. O α na primeira equação é implicitamente somado de acordo com a convenção da notação de Einstein. A primeira equação tensorial expressa as duas equações inomogêneas de Maxwell: lei de Gauss e a lei de Ampère com a correção de Maxwell. A segunda equação expressa as outras duas equações homogêneas: a lei de indução de Faraday e a ausência de monopólos magnéticos.

Mais explicitamente, J = (cρ, J), um vetor contravariante, em termos da densidade de carga ρ e a densidade de corrente J. Em termos de quadripotencial, como um vetor contravariante, , onde φ é o potencial elétrico e A é o potencial vetor magnético pelo calibre de Lorentz F pode ser expresso como:

  /*  = [          ] ω           .

o que conduz a uma matriz 4 × 4 (tensor de segunda ordem):

  /*  = [          ] ω           .

O fato de que ambos os campos elétrico e magnético são combinados em um único tensor, que expressa que, de acordo com a relatividade, ambos os campos são diferentes aspectos da mesma coisa. E assim pela troca dos referenciais, o que parecia ser um campo elétrico em um referencial se afigura como um campo magnético em outro referencial, e vice-versa.

Note que diferentes autores algumas vezes empregam diferentes convenções de sinal para os tensores e quadrivetores, o que não afeta a interpretação física. Note também que Fαβ e Fαβ não são os mesmos: eles são as formas do tensor contravariante e covariante , relacionados pelo tensor métrico g. Na relatividade especial o tensor métrico introduz as mudanças de sinal em algumas componentes de F; dualidades métricas mais complexas são encontradas na relatividade geral.

Equações de Maxwell no vácuo

[editar | editar código-fonte]

No vazio, onde não existem cargas nem correntes, podem ainda existir campos elétrico e magnético. Nesse caso, as quatro equações de Maxwell são:

  /*  = [          ] ω           .
  /*  = [          ] ω           .

O único parâmetro nessas equações é a constante . No sistema internacional de unidades, o valor dessa constante é:

  /*  = [          ] ω           .

que é exatamente igual ao inverso do quadrado da velocidade da luz :

  /*  = [          ] ω           .

Na época de Maxwell, meados do século XIX, a velocidade da luz já tinha sido medida com precisão dando exatamente o mesmo valor que acabamos de calcular a partir da constante de Coulomb e da constante magnética. Assim, Maxwell concluiu que a luz deveria ser uma onda eletromagnética, composta por campos elétrico e magnético que se propagam no espaço.[8]



Comments

Popular posts from this blog