MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / G = [DR] = .= + + * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* / . f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ []
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , .=
Equações de Maxwell na relatividade especial
[editar | editar código-fonte]Na relatividade especial, para expressar mais claramente o fato de que as equações de Maxwell no vácuo tomam a mesma forma em todos os sistemas de coordenadas inerciais, as equações de Maxwell são escritas em termos de quadrivetores e quadritensores na forma manifestamente covariante:
- , /* = = [ ] ω , , .=
e
- /* = = [ ] ω , , .=
onde J é a quadricorrente, F é o tensor intensidade de campo ou tensor de Faraday, escrito como uma matriz 4 × 4 , e é o quadrigradiente, tal que é o operador d'Alembertiano. O α na primeira equação é implicitamente somado de acordo com a convenção da notação de Einstein. A primeira equação tensorial expressa as duas equações inomogêneas de Maxwell: lei de Gauss e a lei de Ampère com a correção de Maxwell. A segunda equação expressa as outras duas equações homogêneas: a lei de indução de Faraday e a ausência de monopólos magnéticos.
Mais explicitamente, J = (cρ, J), um vetor contravariante, em termos da densidade de carga ρ e a densidade de corrente J. Em termos de quadripotencial, como um vetor contravariante, , onde φ é o potencial elétrico e A é o potencial vetor magnético pelo calibre de Lorentz , F pode ser expresso como:
- /* = = [ ] ω , , .=
o que conduz a uma matriz 4 × 4 (tensor de segunda ordem):
- /* = = [ ] ω , , .=
O fato de que ambos os campos elétrico e magnético são combinados em um único tensor, que expressa que, de acordo com a relatividade, ambos os campos são diferentes aspectos da mesma coisa. E assim pela troca dos referenciais, o que parecia ser um campo elétrico em um referencial se afigura como um campo magnético em outro referencial, e vice-versa.
Note que diferentes autores algumas vezes empregam diferentes convenções de sinal para os tensores e quadrivetores, o que não afeta a interpretação física. Note também que Fαβ e Fαβ não são os mesmos: eles são as formas do tensor contravariante e covariante , relacionados pelo tensor métrico g. Na relatividade especial o tensor métrico introduz as mudanças de sinal em algumas componentes de F; dualidades métricas mais complexas são encontradas na relatividade geral.
Equações de Maxwell no vácuo
[editar | editar código-fonte]No vazio, onde não existem cargas nem correntes, podem ainda existir campos elétrico e magnético. Nesse caso, as quatro equações de Maxwell são:
O único parâmetro nessas equações é a constante . No sistema internacional de unidades, o valor dessa constante é:
/* = = [ ] ω , , .=
que é exatamente igual ao inverso do quadrado da velocidade da luz :
/* = = [ ] ω , , .=
Na época de Maxwell, meados do século XIX, a velocidade da luz já tinha sido medida com precisão dando exatamente o mesmo valor que acabamos de calcular a partir da constante de Coulomb e da constante magnética. Assim, Maxwell concluiu que a luz deveria ser uma onda eletromagnética, composta por campos elétrico e magnético que se propagam no espaço.[8]
Comments
Post a Comment